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Reduced Order Models of Refined Yee'’s Cells

t ukasz KulasSudent Member, | EEE, and Michat MrozowskiSenior Member, |EEE

Abstract—T his letter introduces a new approach to increasing
the accuracy of Finite Difference (FD) methods by means of local
mesh refinement. The area dightly larger than single Yee's cell is

covered by densemesh and itsmacromodel iscreated by the M odel > ‘ —
Order Reduction (MOR) of state equations in the frequency do- ‘T X ¢,
main. Such macromodels are subsequently used in the Finite Dif- ~F R
ference Time Domain (FDTD) or the Finite Difference Frequency ? t t ?
Domain (FDFD) analysis of the entire structure. Unlike a popular e e
subgridding technique, the model order reduction approach does T iaT‘ x T x T
e 2 el

not affect the stability or convergence propertiesof underlying nu-
merical schemes.

Index Terms—FDFD, FDTD, model order reduction.
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Fig. 1. Graphical illustration of the concept of a macrocell and its reduced
order model (see the explanations in the tek) field is represented by crosses,
while H, andH, by arrows.

O IMPROVE the accuracy of the finite-difference for-

mulae in the vicinity of surfaces nonconforming to thé selected subspace. For instance, the analysis of a subvolume
grid or small objects which significantly affect the field distri-containing a small feature usifgOR in the Finite Elements
bution (e.g., metal wedges, thin wires) local schemes, based\ethod FEM) was carried out in [3]. Similarly, in [5] and
an integral formulation of finite difference equations have bed#] subdomain models were developed for #B8TD method.
proposed [7], [9]. Local schemes use analytical expressidrigre, we apply the technique described in [4] to create reduced
describing field near a particular object to evaluate the integralgder models of a finely meshed region slightly larger than
more accurately. An alternative approach, which does ngingle Yee's cell.
require any analytical formulae, and thus, is suitable for objectsTo illustrate the technique, let us considé/ polarized field
of any shape, is to locally condense the mesh. This technicuear a metal wedge situated2b Yee’s mesh [Fig. 1(a)] (The
is known as subgriddingSG) [10] and while excellent results metal wedge is merely used as an example, the technique is gen-
have been reported with this approach, one evident negatifal and can be used for other problems.) The wedge introduces
consequence of using a denser mesh is that the norm of filetd singularity which significagtly increases an error in finite
discrete operator increases and this changes the stabilitydidterence formulae relating th# field on the perimeter of the
convergence properties of underlying numerical schemescéll containing the wedge to th8. fields in the centers of ad-
is obvious that significant efficiency improvement would bgacent cells. To describe more accurately the effect of the sin-
obtained if one could derive a technique similar to subgriddirgularity on the£ . field in these cells, let us consider a rect-
which would not change the norm of the discrete operator. Sughgular region which covers one entire Yee’s cell containing
a technique would improve the accuracy without increasing thee tip of the wedge and extends to the centers of adjacent cells
simulation time. In this contribution we show that this can bg-ig. 1(a)]. We shall call this region a macrocell. Assuming uni-
accomplished by applying the model order reduction technigt@m meshing, the size of macroceldaz by 2Ay, whereAx
to the grid equations written for the dense mesh restricted to@md Ay is the mesh density in theandy direction. In order to

|I. INTRODUCTION

area which is small compared to wavelength. reduce the error due to singularity, the macrocell is covered by
a finer mesh [Fig. 1(b)] and the relation between B efield on
II. M ODEL ORDER REDUCTION OF AMACROCELL its boundary and thé/ field on the perimeter of the central cell

) ) o containing the wedge tip is found using Maxwell’s grid equa-
Model order reduction techniques have initially been prg;,<in frequency domain.

posed in computational electrodynamics for finding a compactyy gerive this relation, discretized Maxwell's equations on

representation of an electromagnetic problem [1], [2] in thge jense mesh are written in the form of state equations in the
whole computational space. Recently, new applications haé’-‘aomain 6 = jw, with w being the angular frequency)
been found in which a reduced order model is constructed for
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at the positions corresponding to an electric field excitation on a TABLE |
macrocell boundary. After field normalization [4] and a simple NORMS OF THEOPERATORI'q AND I'

substitution one obtains IIT]] (macrocell )
1 k g=1 [ ¢g=2 [|T}| - subgridding
ZT''h+s-I-h=f1, (2 1] 2.73e+09 | 3.20e+09 3.20e-+009
s 3 || 1.30e+12 | 1.66e+25 2.27e+025
wherel’ = C, - D71 - CT is a symmetric, positive semi-def- 9 I 204e+12 | 6.47e425 23001026

inite matrix andl is the identity matrix. With this equation it
is easy to link the excitationH., fields situated at various loca- the H fields inside the macrocell and tii# fields at the macro-

tions on macrocell’'s boundary) with the respon field at _ .o houndary with (4). This results in the modification of g
Fhe pe'nmeter of central, (.:oarse,.Yee s cell—see Fig. 1(c)]. Tmﬁerator defined on the coarse grid. Obviously, since (4) is fre-
is achieved by transforming (2) into quency-dependent, so becomes the modified operator.
1 -1 As for the FDTD method, two algorithms for deriving the
hy = LT <_ T+s- I) "B -em (3) marching-in-time schemes involving reduced order models have
s been presented in the literature [4], [5]. Either of them can be
whereeys andhyy are the electric field at macrocell’s boundar)}‘SEd but our numerical tests have shown that the algorithm pre-
sented in [5] is faster. The maximum allowable time step in both

and magnetic field being macrocell’s response BnB are the h =l | ional
so-called selector matrices consisting of ones placed at the BBI€MeS IS Inversely proportiona {4]IT 4| [8]. For a macro-
ell andg = 1 the norm ofl’y is much smaller than the norm of

sitions corresponding to the location of excitation or responsg.f | N ¢ | h refi
Except for a formal description, the technique described glorexternal, coarse mesh, even forvery large mesh refinement

far is no different from subgridding. However, system (3) can actors. It is quite unlike the norm df for nonreduced refine.d.
reduced using thENOR algorithm [6]. The goal of the reduc- macrocell. Table | ShOWS examples _for a macrocell containing
tion is to get the low order model of the matrix transfer functiof1€ Wedge and nonrefined mesh with: = Ay = 0.5 mm

relatingens with hy;. The ENOR algorithm generates a set ofgOr differer;]t nlwesh relfinemehnt factltq)rk)(and refduced (rjnodedl or-
p - g orthonormal vectory , wherep is total number of inputs, 9€7S @)- The last column shows the norm of nonreduced oper-

i.e., size of vectorns andg is the model order. This basis isatorl’ which determines the stability of the regular subgridding
used to project the original system &fequations onto a much technique. For comparison, the norm of the operator associated

smaller system gf-q equations which approximates the desireW'th the external mesh, which determines the maximal allow-

transfer function with good accuracy. Projecting (3), using tﬁaéale time step of th&DTD algorithm with no refinement, is
basisV' generated bENOR, one obtains equal to2.88¢24, soFDTD routine with a macromodel of order

q = 1 can be expected to work stable with the coarse mesh time
s (1 -1 step even for fine inner meshes. It has to be noted that while the
hy =L - <; Tyq+s- Iq) ‘Bq-em (4)  mesh refinement factdrcan be large, computational efficiency
of our approach decreases as the inner mesh becomes finer.
whereL, = VIL, T, = VITV, I, = VITV, B, = VTB.
The reduced order model of a macrocell gives one the 1. NUMERICAL RESULTS
frequency dependent relation between the electric field on thep, verify the method presented in this letter and show its ef-
macrocell’s boundary and the magnetic field at the Chosﬁ@iency we have conducted two tests using modificd al-
location inside a considered space. Since the mesh inside é'&ﬁthms. First, ant plane filter (see Fig. 2, the upper-right
macrocell is denser than in external Yee's cells, the number Qo) was analyzed. Six reduced order models of macrocells
inputs is larger than the number of points in the coarse Megh, the mesh refinement factér= 9 where incorporated into
that are located at the macrocell's boundary. Therefore, redug¢gd ~oarseDFD mesh at positions of septa edges (see Fig. 2
order model's excitations at the missing input ports have t0 §g, |ower-right corner). For comparison, tests of the standard

interpolated from the known values &, fields. FDFD algorithm with coarse and dense mesh were conducted.
The reduced order model approximates the original systeffe coarse mesh discretization step was = Ay = 5 mm

over a limited frequency range. The bandwidth can be increasgfich givesN = 2000 variables in a two dimension&DFD
by increasing the model order. However, in our case, the g4qrithm. The fine mesh, with the total numb&r = 99000
reduced order models are constructed for macrocells WhQg&,nknowns, was six times denser than the coarse one. Fig. 2
linear dimensions are only twice that of coarse Yee’s cell, Whi%fhows the reflection coefficient for the dominafif;, mode
means that the frequency dependence is not very significafimnyted with th&DFD method together with the results com-
As aresultg = 1 s sufficient to obtain very good accuracy. nted with the mode-matching technique used as a reference.
) ] ) The error due to dispersion was estimated and the data corrected
A. Using Modelsin the FDFD and FDTD Algorithms so the errors are essentially due to field singularities. As can be
To apply the reduced order model to the Finite Difference adeen, the reflection coefficient for the coarse meBRD differs
gorithm in the frequency domain, one has to modify Maxwell'sonsiderably from the reference obtained using modal analysis.
equations on the coarse mesh [these equations are analogoisfferences are still clearly visible even when the mesh is fine.
(2)], by replacing the usual finite-difference relations betweerhe modifiedFDFD with macrocells allowed us to achieve the
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TABLE I
CoMPARISON OFCPU TiME IN SECONDS AND RELATIVE ERROR IN[%)] FOR
DIFFERENT TIME DOMAIN ALGORITHMS

FDTD =1 5G
time | err time | err time | err
2.82 | -2.60 | 4.58 | -2.60 | 7.6 | -2.60
42.2 | -0.88 | 5.18 |-0.85 | 18.7 | -0.37
1336 | -0.30 9.77 | -0.27 79.7 | 0.27
6120 | -0.18 | 1841 | -0.16 | 255.7 | 0.39

DO w =R

FDTD on the coarse mesh, was used for all refinement factors.
Simulations were run for several tens of thousand of iterations
and no signs of instability were observed.

IV. CONCLUSIONS

Fig. 2. AnE plane filter and its reflection coefficient using the standard and A New technique was presented which allows one to increase

modified FDFD algorithm.

5mm

2 mm

Fig. 3. Structure of a resonator used for tes#IYTD with a macrocell.

the accuracy of the Finite Difference schemes at low time cost.
The technique consists in the application of model order reduc-
tion to a small region slightly larger than single Yee’s cell. The
advantage of this approach is that the accuracy increases, while
the spectral properties of the underlying operators do not dete-
riorate.
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