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Reduced Order Models of Refined Yee’s Cells
Łukasz Kulas, Student Member, IEEE, and Michał Mrozowski, Senior Member, IEEE

Abstract—This letter introduces a new approach to increasing
the accuracy of Finite Difference (FD) methods by means of local
mesh refinement. The area slightly larger than single Yee’s cell is
covered by dense mesh and its macromodel is created by the Model
Order Reduction (MOR) of state equations in the frequency do-
main. Such macromodels are subsequently used in the Finite Dif-
ference Time Domain (FDTD) or the Finite Difference Frequency
Domain (FDFD) analysis of the entire structure. Unlike a popular
subgridding technique, the model order reduction approach does
not affect the stability or convergence properties of underlying nu-
merical schemes.

Index Terms—FDFD, FDTD, model order reduction.

I. INTRODUCTION

TO IMPROVE the accuracy of the finite-difference for-
mulae in the vicinity of surfaces nonconforming to the

grid or small objects which significantly affect the field distri-
bution (e.g., metal wedges, thin wires) local schemes, based on
an integral formulation of finite difference equations have been
proposed [7], [9]. Local schemes use analytical expressions
describing field near a particular object to evaluate the integrals
more accurately. An alternative approach, which does not
require any analytical formulae, and thus, is suitable for objects
of any shape, is to locally condense the mesh. This technique
is known as subgridding (SG) [10] and while excellent results
have been reported with this approach, one evident negative
consequence of using a denser mesh is that the norm of the
discrete operator increases and this changes the stability or
convergence properties of underlying numerical schemes. It
is obvious that significant efficiency improvement would be
obtained if one could derive a technique similar to subgridding
which would not change the norm of the discrete operator. Such
a technique would improve the accuracy without increasing the
simulation time. In this contribution we show that this can be
accomplished by applying the model order reduction technique
to the grid equations written for the dense mesh restricted to an
area which is small compared to wavelength.

II. M ODEL ORDER REDUCTION OF A MACROCELL

Model order reduction techniques have initially been pro-
posed in computational electrodynamics for finding a compact
representation of an electromagnetic problem [1], [2] in the
whole computational space. Recently, new applications have
been found in which a reduced order model is constructed for
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Fig. 1. Graphical illustration of the concept of a macrocell and its reduced
order model (see the explanations in the text),~E field is represented by crosses,
while ~H and ~H by arrows.

a selected subspace. For instance, the analysis of a subvolume
containing a small feature usingMOR in the Finite Elements
Method (FEM) was carried out in [3]. Similarly, in [5] and
[4] subdomain models were developed for theFDTD method.
Here, we apply the technique described in [4] to create reduced
order models of a finely meshed region slightly larger than
single Yee’s cell.

To illustrate the technique, let us consider polarized field
near a metal wedge situated in2D Yee’s mesh [Fig. 1(a)] (The
metal wedge is merely used as an example, the technique is gen-
eral and can be used for other problems.) The wedge introduces
field singularity which significantly increases an error in finite
difference formulae relating the field on the perimeter of the
cell containing the wedge to the fields in the centers of ad-
jacent cells. To describe more accurately the effect of the sin-
gularity on the field in these cells, let us consider a rect-
angular region which covers one entire Yee’s cell containing
the tip of the wedge and extends to the centers of adjacent cells
[Fig. 1(a)]. We shall call this region a macrocell. Assuming uni-
form meshing, the size of macrocell is by , where
and is the mesh density in theand direction. In order to
reduce the error due to singularity, the macrocell is covered by
a finer mesh [Fig. 1(b)] and the relation between thefield on
its boundary and the field on the perimeter of the central cell
containing the wedge tip is found using Maxwell’s grid equa-
tions in frequency domain.

To derive this relation, discretized Maxwell’s equations on
the dense mesh are written in the form of state equations in the
-domain ( , with being the angular frequency)

(1)

where and are discrete space operators, and
are matrices involving parameters such as the discretization

step, permeability and permittivity,, are electric and mag-
netic fields inside a macrocell andis a vector with ones placed
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at the positions corresponding to an electric field excitation on a
macrocell boundary. After field normalization [4] and a simple
substitution one obtains

(2)

where is a symmetric, positive semi-def-
inite matrix and is the identity matrix. With this equation it
is easy to link the excitation ( fields situated at various loca-
tions on macrocell’s boundary) with the response [field at
the perimeter of central, coarse, Yee’s cell—see Fig. 1(c)]. This
is achieved by transforming (2) into

(3)

where and are the electric field at macrocell’s boundary
and magnetic field being macrocell’s response and, are the
so-called selector matrices consisting of ones placed at the po-
sitions corresponding to the location of excitation or response.

Except for a formal description, the technique described so
far is no different from subgridding. However, system (3) can be
reduced using theENOR algorithm [6]. The goal of the reduc-
tion is to get the low order model of the matrix transfer function
relating with . TheENOR algorithm generates a set of

orthonormal vectors , where is total number of inputs,
i.e., size of vector and is the model order. This basis is
used to project the original system ofequations onto a much
smaller system of equations which approximates the desired
transfer function with good accuracy. Projecting (3), using the
basis generated byENOR, one obtains

(4)

where , , , .
The reduced order model of a macrocell gives one the

frequency dependent relation between the electric field on the
macrocell’s boundary and the magnetic field at the chosen
location inside a considered space. Since the mesh inside the
macrocell is denser than in external Yee’s cells, the number of
inputs is larger than the number of points in the coarse mesh
that are located at the macrocell’s boundary. Therefore, reduced
order model’s excitations at the missing input ports have to be
interpolated from the known values of fields.

The reduced order model approximates the original system
over a limited frequency range. The bandwidth can be increased
by increasing the model order. However, in our case, the
reduced order models are constructed for macrocells whose
linear dimensions are only twice that of coarse Yee’s cell, which
means that the frequency dependence is not very significant.
As a result, is sufficient to obtain very good accuracy.

A. Using Models in the FDFD and FDTD Algorithms

To apply the reduced order model to the Finite Difference al-
gorithm in the frequency domain, one has to modify Maxwell’s
equations on the coarse mesh [these equations are analogous to
(1)], by replacing the usual finite-difference relations between

TABLE I
NORMS OF THEOPERATOR� AND �

the fields inside the macrocell and the fields at the macro-
cell boundary with (4). This results in the modification of the
operator defined on the coarse grid. Obviously, since (4) is fre-
quency-dependent, so becomes the modified operator.

As for the FDTD method, two algorithms for deriving the
marching-in-time schemes involving reduced order models have
been presented in the literature [4], [5]. Either of them can be
used but our numerical tests have shown that the algorithm pre-
sented in [5] is faster. The maximum allowable time step in both
schemes is inversely proportional to [8]. For a macro-
cell and the norm of is much smaller than the norm of

for external, coarse mesh, even for very large mesh refinement
factors. It is quite unlike the norm of for nonreduced refined
macrocell. Table I shows examples for a macrocell containing
the wedge and nonrefined mesh with mm
for different mesh refinement factors () and reduced model or-
ders ( ). The last column shows the norm of nonreduced oper-
ator which determines the stability of the regular subgridding
technique. For comparison, the norm of the operator associated
with the external mesh, which determines the maximal allow-
able time step of theFDTD algorithm with no refinement, is
equal to , soFDTD routine with a macromodel of order

can be expected to work stable with the coarse mesh time
step even for fine inner meshes. It has to be noted that while the
mesh refinement factorcan be large, computational efficiency
of our approach decreases as the inner mesh becomes finer.

III. N UMERICAL RESULTS

To verify the method presented in this letter and show its ef-
ficiency we have conducted two tests using modifiedFD al-
gorithms. First, an plane filter (see Fig. 2, the upper-right
corner) was analyzed. Six reduced order models of macrocells
with the mesh refinement factor where incorporated into
the coarseFDFD mesh at positions of septa edges (see Fig. 2,
the lower-right corner). For comparison, tests of the standard
FDFD algorithm with coarse and dense mesh were conducted.
The coarse mesh discretization step was mm
which gives variables in a two dimensionalFDFD
algorithm. The fine mesh, with the total number
of unknowns, was six times denser than the coarse one. Fig. 2
shows the reflection coefficient for the dominant mode
computed with theFDFD method together with the results com-
puted with the mode-matching technique used as a reference.
The error due to dispersion was estimated and the data corrected
so the errors are essentially due to field singularities. As can be
seen, the reflection coefficient for the coarse meshFDFD differs
considerably from the reference obtained using modal analysis.
Differences are still clearly visible even when the mesh is fine.
The modifiedFDFD with macrocells allowed us to achieve the
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Fig. 2. AnE plane filter and its reflection coefficient using the standard and
modifiedFDFD algorithm.

Fig. 3. Structure of a resonator used for testingFDTD with a macrocell.

frequency characteristic which is almost indistinguishable from
the reference. The CPU time for the modified algorithm was of
the same order as that of the standardFDFD on the coarse mesh
and two orders of magnitude shorter than the computation time
for the fine mesh.

To verify the performance of the new algorithm in theFDTD
method we have calculated the resonant frequency of the first
mode in a rectangular resonator containing a metal iris (see
Fig. 3). The coarse mesh consisted of 1012 discretization
points ( mm). The whole mesh was subse-
quently refined by increasing the density by the factor of
in each direction.

Relative errors in the computed resonant frequency with cor-
responding simulation times for the standardFDTD method,
FDTD with a macrocell (model order ) andFDTD with
subgridding (a scheme similar to [10]) are shown in Table II. The
reference value 46.6793 GHz was computed by extrapolating
results for progressively refined meshes. In theFDTD scheme
with a macrocell the same time step, namely that of the standard

TABLE II
COMPARISON OFCPU TIME IN SECONDS ANDRELATIVE ERROR IN [%] FOR

DIFFERENTTIME DOMAIN ALGORITHMS

FDTD on the coarse mesh, was used for all refinement factors.
Simulations were run for several tens of thousand of iterations
and no signs of instability were observed.

IV. CONCLUSIONS

A new technique was presented which allows one to increase
the accuracy of the Finite Difference schemes at low time cost.
The technique consists in the application of model order reduc-
tion to a small region slightly larger than single Yee’s cell. The
advantage of this approach is that the accuracy increases, while
the spectral properties of the underlying operators do not dete-
riorate.
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